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Linear modal synthesis methods have often been used to generate sounds for
rigid bodies. One of the key challenges in widely adopting such techniques
is the lack of automatic determination of satisfactory material parameters
that recreate realistic audio quality of sounding materials. We introduce a
novel method using prerecorded audio clips to estimate material parameters
that capture the inherent quality of recorded sounding materials. Our method
extracts perceptually salient features from audio examples. Based on psy-
choacoustic principles, we design a parameter estimation algorithm using
an optimization framework and these salient features to guide the search of
the best material parameters for modal synthesis. We also present a method
that compensates for the differences between the real-world recording and
sound synthesized using solely linear modal synthesis models to create the
final synthesized audio. The resulting audio generated from this sound syn-
thesis pipeline well preserves the same sense of material as a recorded audio
example. Moreover, both the estimated material parameters and the resid-
ual compensation naturally transfer to virtual objects of different sizes and
shapes, while the synthesized sounds vary accordingly. A perceptual study
shows the results of this system compare well with real-world recordings in
terms of material perception.
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1. INTRODUCTION

Sound plays a prominent role in a virtual environment. Recent
progress has been made on sound synthesis models that automati-
cally produce sounds for various types of objects and phenomena.
However, it remains a demanding task to add high-quality sounds to
a visual simulation that attempts to depict its real-world counterpart.
Firstly, there is the difficulty for digitally synthesized sounds to em-
ulate real sounds as closely as possible. Lack of true-to-life sound
effects would cause a visual representation to lose its believability.
Secondly, sound should be closely synchronized with the graphical
rendering in order to contribute to creation of a compelling virtual
world. Noticeable disparity between the dynamic audio and visual
components could lead to a poor virtual experience for users.

The traditional sound effect production for video games, anima-
tion, and movies is a laborious practice. Talented Foley artists are
normally employed to record a large number of sound samples in
advance and manually edit and synchronize the recorded sounds
to a visual scene. This approach generally achieves satisfactory re-
sults. However, it is labor intensive and cannot be applied to all
interactive applications. It is still challenging, if not infeasible, to
produce sound effects that precisely capture complex interactions
that cannot be predicted in advance.

On the other hand, modal synthesis methods are often used for
simulating sounds in real-time applications. This approach gener-
ally does not depend on any prerecorded audio samples to produce
sounds triggered by all types of interactions, so it does not require
manually synchronizing the audio and visual events. The produced
sounds are capable of reflecting the rich variations of interactions
and also the geometry of the sounding objects. Although this ap-
proach is not as demanding during runtime, setting up good initial
parameters for the virtual sounding materials in modal analysis is a
time-consuming and nonintuitive process. When faced with a com-
plicated scene consisting of many different sounding materials, the
parameter selection procedure can quickly become prohibitively
expensive and tedious.

Although tables of material parameters for stiffness and mass
density are widely available, directly looking up these parameters
in physics handbooks does not offer as intuitive, direct control as
using a recorded audio example. In fact, sound designers often
record their own audio to obtain the desired sound effects. This
article presents a new data-driven sound synthesis technique that
preserves the realism and quality of audio recordings, while ex-
ploiting all the advantages of physically based modal synthesis.
We introduce a computational framework that takes just one exam-
ple audio recording and estimates the intrinsic material parameters

ACM Transactions on Graphics, Vol. 32, No. 1, Article 1, Publication date: January 2013.



1:2 • Z. Ren et al.
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Fig. 1. From the recording of a real-world object (a), our framework is able to find the material parameters and generates similar sound for a replicate object
(b). The same set of parameters can be transfered to various virtual objects to produce sounds with the same material quality ((c), (d), (e)).

(such as stiffness, damping coefficients, and mass density) that can
be directly used in modal analysis.

As a result, for objects with different geometries and runtime
interactions, different sets of modes are generated or excited differ-
ently, and different sounds are produced. However, if the material
properties are the same, they should all sound like coming from
the same material. For example, a plastic plate being hit, a plastic
ball being dropped, and a plastic box sliding on the floor generate
different sounds, but they all sound like plastic, as they have the
same material properties. Therefore, if we can deduce the material
properties from a recorded sound and transfer them to different
objects with rich interactions, the intrinsic quality of the original
sounding material is preserved. Our method can also compensate the
differences between the example audio and the modal-synthesized
sound. Both the material parameters and the residual compensation
are capable of being transfered to virtual objects of varying sizes
and shapes and capture all forms of interactions. Figure 1 shows an
example of our framework. From one recorded impact sound (Fig-
ure 1(a)), we estimated material parameters, which can be directly
applied to various geometries (Figures 1(c), 1(d), 1(e)) to generate
audio effects that automatically reflect the shape variation while still
preserving the same sense of material. Figure 2 depicts the pipeline
of our approach, and its various stages are explained next.

Feature extraction. Given a recorded impact audio clip, from
which we first extract some high-level features, namely, a set of
damped sinusoids with constant frequencies, dampings, and initial
amplitudes (Section 4). These features are then used to facilitate
estimation of the material parameters (Section 5), and guide the
residual compensation process (Section 6).

Parameter estimation. Due to the constraints of the sound syn-
thesis model, we assume a limited input from just one recording
and it is challenging to estimate the material parameters from one
audio sample. To do so, a virtual object of the same size and shape
as the real-world object used in recording the example audio is
created. Each time an estimated set of parameters are applied to
the virtual object for a given impact, the generated sound, as well
as the feature information of the resonance modes, are compared
with the real-world example sound and extracted features, respec-
tively, using a difference metric. This metric is designed based on
psychoacoustic principles, and aimed at measuring both the audio
material resemblance of two objects and the perceptual similarity
between two sound clips. The optimal set of material parameters is
thereby determined by minimizing this perceptually inspired metric

Fig. 2. Overview of the example-guided sound synthesis framework
(shown in the blue block): Given an example audio clip as input, features are
extracted. They are then used to search for the optimal material parameters
based on a perceptually inspired metric. A residual between the recorded au-
dio and the modal synthesis sound is calculated. At runtime, the excitation is
observed for the modes. Corresponding rigid-body sounds that have a similar
audio quality as the original sounding materials can be automatically synthe-
sized. A modified residual is added to generate a more realistic final sound.

function (see Section 5). These parameters are readily transferable
to other virtual objects of various geometries undergoing rich inter-
actions, and the synthesized sounds preserve the intrinsic quality of
the original sounding material.

Residual compensation. Finally, our approach also accounts for
the residual, that is, the approximated differences between the real-
world audio recording and the modal synthesis sound with the esti-
mated parameters. First, the residual is computed using the extracted
features, the example recording, and the synthesized audio. Then
at runtime, the residual is transfered to various virtual objects. The
transfer of residual is guided by the transfer of modes, and natu-
rally reflects the geometry and runtime interaction variation (see
Section 6).

Our key contributions are summarized as follows.

—A feature-guided parameter estimation framework to determine
the optimal material parameters can be used in existing modal
sound synthesis applications.
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—An effective residual compensation method accounts for the
difference between the real-world recording and the modal-
synthesized sound.

—A general framework for synthesizing rigid-body sounds closely
resembles recorded example materials.

—Automatic transfer of material parameters and residual compen-
sation to different geometries and runtime dynamics produces
realistic sounds that vary accordingly.

2. RELATED WORK

In the last couple of decades, there has been strong interest in
digital sound synthesis in both computer music and computer
graphics communities due to the needs for auditory display in
virtual environment applications. The traditional practice of Foley
sounds is still widely adopted by sound designers for applications
like video games and movies. Real sound effects are recorded and
edited to match a visual display. More recently, granular synthesis
became a popular technique to create sounds with computers or
other digital synthesizers. Short grains of sounds are manipulated to
form a sequence of audio signals that sound like a particular object
or event. Roads [2004] gave an excellent review on the theories and
implementation of generating sounds with this approach. Picard
et al. [2009] proposed techniques to mix sound grains according to
events in a physics engine.

Physically based sound synthesis. Another approach for simulat-
ing sound sources is using physically based simulation to synthesize
realistic sounds that automatically synchronize with the visual ren-
dering. Generating sounds of interesting natural phenomena like
fluid dynamics and aerodynamics have been proposed [Dobashi
et al. 2003; 2004; Zheng and James 2009; Moss et al. 2010; Chad-
wick and James 2011]. The ubiquitous rigid-body sounds play a
vital role in all types of virtual environments, and these sounds are
what we focus on in this article. O’Brien et al. [2001] proposed
simulating rigid bodies with deformable body models that approx-
imate solid objects’ small-scale vibration leading to variation in air
pressure, which propagates sounds to human ears. Their approach
accurately captures surface vibration and wave propagation once
sounds are emitted from objects. However, it is far from being
efficient enough to handle interactive applications. Adrien [1991]
introduced modal synthesis to digital sound generation. For real-
time applications, linear modal sound synthesis has been widely
adopted to synthesize rigid-body sounds [van den Doel and Pai
1998; O’Brien et al. 2002; Raghuvanshi and Lin 2006; James et al.
2006; Zheng and James 2010; Ren et al. 2012]. This method acquires
a modal model (i.e., a bank of damped sinusoidal waves) using
modal analysis and generates sounds at runtime based on excita-
tion to this modal model. Moreover, sounds of complex interaction
can be achieved with modal synthesis. Van den Doel et al. [2001]
presented parametric models to approximate contact forces as ex-
citation to modal models to generate impact, sliding, and rolling
sounds. Ren et al. [2010] proposed including normal map informa-
tion to simulate sliding sounds that reflect contact surface details.
More recently, Zheng and James [2011] created highly realistic con-
tact sounds with linear modal synthesis by enabling nonrigid sound
phenomena and modeling vibrational contact damping. Moreover,
the standard modal synthesis can be accelerated with techniques
proposed by Raghuvanshi and Lin [2006], and Bonneel et al. [2008],
which make synthesizing a large number of sounding objects feasi-
ble at interactive rates.

The use of linear modal synthesis is not limited to creating simple
rigid-body sounds. Chadwick et al. [2009] used modal analysis
to compute linear mode basis, and added nonlinear coupling of

those modes to efficiently approximate the rich thin-shell sounds.
Zheng and James [2010] extended linear modal synthesis to handle
complex fracture phenomena by precomputing modal models for
ellipsoidal sound proxies.

However, few previous sound synthesis work addressed the issue
of how to determine material parameters used in modal analysis to
more easily recreate realistic sounds.

Parameter acquisition. Spring-mass [Raghuvanshi and Lin 2006]
and finite element [O’Brien et al. 2002] representations have been
used to calculate the modal model of arbitrary shapes. Challenges
lie in how to choose the material parameters used in these represen-
tations. Pai et al. [2001] and Corbett et al. [2007] directly acquire
a modal model by estimating modal parameters (i.e., amplitudes,
frequencies, and dampings) from measured impact sound data. A
robotic device is used to apply impulses on a real object at a large
number of sample points, and the resulting impact sounds are an-
alyzed for modal parameter estimation. This method is capable of
constructing a virtual sounding object that faithfully recreates the
audible resonance of its measured real-world counterpart. However,
each new virtual geometry would require a new measuring process
performed on a real object that has exactly the same shape, and it
can become prohibitively expensive with an increasing number of
objects in a scene. This approach generally extracts hundreds of
parameters for one object from many audio clips, while the goal
of our technique instead is to estimate the few parameters that best
represent one material of a sounding object from only one audio
clip.

To the best of our knowledge, the only other research work that
attempts to estimate sound parameters from one recorded clip is by
Lloyd et al. [2011]. Prerecorded real-world impact sounds are uti-
lized to find peak and long-standing resonance frequencies, and the
amplitude envelopes are then tracked for those frequencies. They
proposed using the tracked time-varying envelope as the amplitude
for the modal model, instead of the standard damped sinusoidal
waves in conventional modal synthesis. Richer and more realistic
audio is produced this way. Their data-driven approach estimates
the modal parameters instead of material parameters. Similar to
the method proposed by Pai et al. [2001], these are per-mode pa-
rameters and not transferable to another object with corresponding
variation. At runtime, they randomize the gains of all tracked modes
to generate an illusion of variation when hitting different locations
on the object. Therefore, the produced sounds do not necessarily
vary correctly or consistently with hit points. Their adopted reso-
nance modes plus residual resynthesis model is very similar to that
of SoundSeed Impact [Audiokinetic 2011], which is a sound syn-
thesis tool widely used in the game industry. Both of these works
extract and track resonance modes and modify them with signal
processing techniques during synthesis. None of them attempts to
fit the extracted per-mode data to a modal sound synthesis model,
that is, estimating the higher-level material parameters.

In computer music and acoustic communities, researchers pro-
posed methods to calibrate physically based virtual musical instru-
ments. For example, Välimäki et al. [1996, 1997] proposed a physi-
cal model for simulating plucked string instruments. They presented
a parameter calibration framework that detects pitches and damping
rates from recorded instrument sounds with signal processing tech-
niques. However, their framework only fits parameters for strings
and resonance bodies in guitars, and it cannot be easily extended to
extract parameters of a general rigid-body sound synthesis model.
Trebian and Oliveira [2009] presented a sound synthesis method
with linear digital filters. They estimated the parameters for recur-
sive filters based on prerecorded audio and resynthesized sounds in
real time with digital audio processing techniques. This approach
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is not designed to capture rich physical phenomena that are auto-
matically coupled with varying object interactions. The relationship
between the perception of sounding objects and their sizes, shapes,
and material properties have been investigated with experiments,
among which Lakatos et al. [1997] and Fontana [2003] presented
results and studied human’s capability to tell materials, sizes, and
shapes of objects based on their sounds.

Modal plus residual models. The sound synthesis model with
a deterministic signal plus a stochastic residual was introduced to
spectral synthesis by Serra and Smith [1990]. This approach ana-
lyzes an input audio and divides it into a deterministic part, which are
time-variant sinusoids, and a stochastic part, which is obtained by
spectral subtraction of the deterministic sinusoids from the original
audio. In the resynthesis process, both parts can be modified to cre-
ate various sound effects as suggested by Cook [1996; 1997; 2002]
and Lloyd et al. [2011]. Methods for tracking the amplitudes of the
sinusoids in audio dates back to Quateri and McAulay [1985], while
more recent work [Serra and Smith III 1990; Serra 1997; Lloyd et al.
2011] also proposes effective methods for this purpose. All of these
works directly construct the modal sounds with the extracted fea-
tures, while our modal component is synthesized with the estimated
material parameters. Therefore, although we adopt the same con-
cept of modal plus residual synthesis for our framework, we face
different constraints due to the new objective in material parameter
estimation, and render these existing works not applicable to the
problem addressed in this article. Later, we will describe our fea-
ture extraction (Section 4) and residual compensation (Section 6)
methods that are suitable for material parameter estimation.

3. BACKGROUND

Modal sound synthesis. The standard linear modal synthesis tech-
nique [Shabana 1997] is frequently used for modeling of dy-
namic deformation and physically based sound synthesis. We adopt
tetrahedral finite element models to represent any given geome-
try [O’Brien et al. 2002]. The displacements, x ∈ R

3N , in such
a system can be calculated with the following linear deformation
equation

Mẍ + Cẋ + Kx = f, (1)

where M, C, and K respectively represent the mass, damping, and
stiffness matrices. For small levels of damping, it is reasonable to ap-
proximate the damping matrix with Rayleigh damping, that is, repre-
senting the damping matrix as a linear combination of mass matrix
and stiffness matrix: C = αM + βK. This is a well-established
practice and has been adopted by many modal-synthesis-related
works in both graphics and acoustics communities. After solving
the generalized eigenvalue problem

KU = �MU, (2)

the system can be decoupled into

q̈ + (αI + β�)q̇ + �q = UT f, (3)

where � is a diagonal matrix, containing the eigenvalues of Eq. (2),
U is the eigenvector matrix, and transforms x to the decoupled
deformation bases q with x = Uq.

The solution to this decoupled system, (Eq. (3)) consists of a
bank of modes, that is, damped sinusoidal waves. The i’th mode
looks like

qi = aie
−di t sin(2πfit + θi), (4)

where fi is the frequency of the mode, di is the damping coefficient,
ai is the excited amplitude, and θi is the initial phase.

The frequency, damping, and amplitude together define the fea-
ture φ of mode i

φi = (fi, di, ai) (5)

and will be used throughout the rest of the article. We ignore θi in
Eq. (4) because it can be safely assumed as zero in our estimation
process, where the object is initially at rest and struck at t = 0.
f and ω are used interchangeably to represent frequency, where
ω = 2πf .

Material properties. The values in Eq. (4) depend on the material
properties, the geometry, and the runtime interactions: ai and θi

depend on the runtime excitation of the object, while fi and di de-
pend on the geometry and the material properties as shown shortly.
Solving Eq. (3) we get

di = 1

2
(α + βλi), (6)

fi = 1

2π

√
λi −

(
α + βλi

2

)2

. (7)

We assume the Rayleigh damping coefficients, α and β, can be
transfered to another object with no drastic shape or size change.
Empirical experiments were carried out to support this assumption.
Please refer to Ren et al. [2013] for more detail. The eigenvalues
λi’s are calculated from M and K and determined by the geometry
and tetrahedralization as well as the material properties: in our
tetrahedral finite element model, M and K depend on mass density
ρ, Young’s modulus E, and Poisson’s ratio ν, if we assume the
material is isotropic and homogeneous.

Constraint for modes. We observe modes in the adopted linear
modal synthesis model have to obey some constraint due to its
formulation. Because of the Rayleigh damping model we adopted,
all estimated modes lie on a circle in the (ω, d)-space, characterized
by α and β. This can be shown as follows. Rearranging Eq. (6) and
Eq. (7) as

ωi
2 +

(
di − 1

β

)2

=
(

1

β

√
1 − αβ

)2

(8)

we see that it takes the form of ωi
2 +(di −yc)2 = R2. This describes

a circle of radius R centered at (0, yc) in the (ω, d)-space, where R
and yc depend on α and β. This constraint for modes restricts the
model from capturing some sound effects and renders it impossible
to make modal synthesis sounds with Rayleigh damping exactly
the same as an arbitrary real-world recording. However, if a circle
that best represents the recording audio is found, it is possible to
preserve the same sense of material as the recording. It is shown in
Section 4 and 5.3 how a proposed pipeline achieves this.

4. FEATURE EXTRACTION

An example impact sound can be represented by high-level features
collectively.

We first analyze and decompose a given example audio clip into
a set of features, which will later be used in the subsequent phases
of our pipeline, namely the parameter estimation and residual com-
pensation parts. Next we present the detail of our feature extraction
algorithm.

Multilevel power spectrogram representation. As shown in
Eq. (5), the feature of a mode is defined as its frequency, damp-
ing, and amplitude. In order to analyze the example audio and
extract these feature values, we use a time-varying frequency rep-
resentation called power spectrogram. A power spectrogram P for
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a time domain signal s[n], is obtained by first breaking it up into
overlapping frames, and then performing windowing and Fourier
transform on each frame

P[m,ω] =
∣∣∣∣∣
∑

n

s[n]w[n − m]e−jωn

∣∣∣∣∣
2

, (9)

where w is the window applied to the original time domain sig-
nal [Oppenheim et al. 1989]. The power spectrogram records the
signal’s power spectral density within a frequency bin centered
around ω = 2πf and a time frame defined by m.

When computing the power spectrogram for a given sound clip,
one can choose the resolutions of the time or frequency axes by
adjusting the length of the window w. Choosing the resolution in
one dimension, however, automatically determines the resolution in
the other dimension. A high-frequency resolution results in a low
temporal resolution, and vice versa.

To fully accommodate the range of frequency and damping for all
the modes of an example audio, we compute multiple levels of power
spectrograms, with each level doubling the frequency resolution of
the previous one and halving the temporal resolution. Therefore, for
each mode to be extracted, a suitable level of power spectrogram can
be chosen first, depending on the time and frequency characteristics
of the mode.

Global-to-local scheme. After computing a set of multilevel
power spectrograms for a recorded example audio, we globally
search through all levels for peaks (local maxima) along the fre-
quency axis. These peaks indicate the frequencies where potential
modes are located, some of which may appear in multiple levels.
At this step the knowledge of frequency is limited by the frequency
resolution of the level of power spectrogram. For example, in the
level where the window size is 512 points, the frequency resolution
is as coarse as 86 Hz. A more accurate estimate of the frequency as
well as the damping value is obtained by performing a local shape
fitting around the peak.

The power spectrogram of a damped sinusoid has a “hill” shape,
similar to the blue surface shown in Figure 3(b). The actual shape
contains information of the damped sinusoid: the position and height
of the peak are respectively determined by the frequency and am-
plitude, while the slope along the time axis and the width along the
frequency axis are determined by the damping value. For a poten-
tial mode, a damped sinusoid with the initial guess of (f, d, a) is
synthesized and added to the sound clip consisting of all the modes
collected so far. The power spectrogram of the resulting sound clip
is computed (shown as the red hill shape in Figure 3(b)), and com-
pared locally with that of the recorded audio (the blue hill shape in
Figure 3(b)). An optimizer then searches in the continuous (f, d, a)-
space to minimize the difference and acquire a refined estimate of
the frequency, damping, and amplitude of the mode at question.
Figure 3 illustrates this process.

The local shape fittings for all potential modes are performed in
a greedy manner. Among all peaks in all levels, the algorithm starts
with the one having the highest average power spectral density. If
the shape fitting error computed is above a predefined threshold,
we conclude that this level of power spectrogram is not sufficient in
capturing the feature characteristics and thereby discard the result;
otherwise the feature of the mode is collected. In other words,
the most suitable time-frequency resolution (level) for a mode
with a particular frequency is not predetermined, but dynamically
searched for. Similar approaches have been proposed to analyze
the sinusoids in an audio clip in a multiresolution manner (e.g.,
Levine et al. [1998], where the time-frequency regions’ power
spectrogram resolution is predetermined).

Fig. 3. Feature extraction from a power spectrogram. (a) A peak is detected
in a power spectrogram at the location of a potential mode. f = frequency,
t=time. (b) A local shape fitting of the power spectrogram is performed to
estimate the frequency, damping, and amplitude of the potential mode. (c)
If the fitting error is below a certain threshold, we collect it in the set of
extracted features, shown as the red cross in the feature space. (Only the
frequency f and damping d are shown here.)

We have tested the accuracy of our feature extraction with 100
synthetic sinusoids with frequencies and damping values randomly
drawn from [0, 22050.0](Hz) and [0.1, 1000](s−1) respectively. The
average relative error is 0.040% for frequencies and 0.53% for
damping values, which are sufficient for our framework.

Comparison with existing methods. The SMS method [Serra and
Smith III 1990] is also capable of estimating information of modes.
From a power spectrogram, it tracks the amplitude envelope of
each peak over time, and a similar method is adopted by Lloyd
et al. [2011]. Unlike our algorithm, which fits the entire local hill
shape, they only track a single peak value per time frame. In the
case where the mode’s damping is high or the signal’s background
is noisy, this method yields high error.

Another feature extraction technique was proposed by Pai
et al. [2001] and Corbett et al. [2007]. The method is known for
its ability to separate modes within one frequency bin. In our
framework, however, the features are only used to guide the sub-
sequent parameter estimation process, which is not affected much
by replacing two nearly duplicate features with one. Our method
also offers some advantages and achieves higher accuracy in some
cases compared with theirs. First, our proposed greedy approach is
able to reduce the interference caused by high energy neighboring
modes. Secondly, these earlier methods use a fixed frequency-time
resolution that is not necessarily the most suitable for extracting
all modes, while our method selects the appropriate resolution
dynamically.

The detailed comparisons and data can be found in Appendix A.

5. PARAMETER ESTIMATION

Using the extracted features (Section 4) and psychoacoustic prin-
ciples (as described in this section), we introduce a parameter es-
timation algorithm based on an optimization framework for sound
synthesis.

5.1 An Optimization Framework

We now describe the optimization work flow for estimating material
parameters for sound synthesis. In the rest of the article, all data
related to the example audio recordings are called reference data;
all data related to the virtual object (which are used to estimate the
material parameters) are called estimated data, and are denoted with
a tilde, for example, f̃ .

Reference sound and features. The reference sound is the example
recorded audio, which can be expressed as a time domain signal s[n].
The reference features � = {φi} = {(fi, di, ai)} are the features
extracted from the reference sound, as described in Section 4.
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Estimated sound and features. In order to compute the estimated
sound s̃[n] and estimated features �̃ = {φ̃j } = {(f̃j , d̃j , ãj )}, we
first create a virtual object that is roughly the same size and geometry
as the real-world object whose impact sound was recorded. We then
tetrahedralize it and calculate its mass matrix M and stiffness matrix
K. As mentioned in Section 3, we assume the material is isotropic
and homogeneous. Therefore, the initial M and K can be found
using the finite element method, by assuming some initial values
for the Young’s modulus, mass density, and Poisson’s ratio, E0, ρ0,
and ν0. The assumed eigenvalues λ0

i ’s can thereby be computed.
For computational efficiency, we make a further simplification that
the Poisson’s ratio is held as constant. Then the eigenvalue λi for
general E and ρ is just a multiple of λ0

i

λi = γ

γ0
λ0

i , (10)

where γ = E/ρ is the ratio of Young’s modulus to density, and
γ0 = E0/ρ0 is the ratio using the assumed values.

We then apply a unit impulse on the virtual object at a point
corresponding to the actual impact point in the example recording,
which gives an excitation pattern of the eigenvalues as Eq. (4). We
denote the excitation amplitude of mode j as a0

j . The superscript 0
notes that it is the response of a unit impulse; if the impulse is not
unit, then the excitation amplitude is just scaled by a factor σ .

aj = σa0
j (11)

Combining Eqs. (6), (7), (10), and (11), we obtain a mapping from
an assumed eigenvalue and its excitation (λ0

j , a
0
j ) to an estimated

mode with frequency f̃j , damping d̃j , and amplitude ãj .

(λ0
j , a

0
j )

{α,β,γ,σ }−−−−→ (f̃j , d̃j , ãj ) (12)

The estimated sound s̃[n], is thereby generated by mixing all the
estimated modes

s̃[n] =
∑

j

(
ãj e

−d̃j (n/Fs ) sin(2πf̃j (n/Fs))
)

, (13)

where Fs is the sampling rate.
Difference metric. The estimated sound s̃[n] and features �̃ can

then be compared against the reference sound s[n] and features �,
and a difference metric can be computed. If such difference metric
function is denoted by �, the problem of parameter estimation
becomes finding

{α, β, γ, σ } = arg min
{α,β,γ,σ }

�. (14)

An optimization process is used to find such parameter set. The most
challenging part of our work is to find a suitable metric function that
can truly reflect what we view as the difference. Next we discuss the
details about the metric design in Section 5.2 and the optimization
process in Section 5.3.

5.2 Metric

Given an impact sound of a real-world object, the goal is to find a set
of material parameters such that when they are applied to a virtual
object of the same size and shape, the synthesized sounds have
the similar auditory perception as the original recorded sounding
object. By further varying the size, geometry, and the impact points
of the virtual object, the intrinsic “audio signature” of each material
for the synthesized sound clips should closely resemble that of the
original recording. These are the two criteria guiding the estimation
of material parameters based on an example audio clip:

(1) the perceptual similarity of two sound clips;
(2) the audio material resemblance of two generic objects.

The perceptual similarity of sound clips can be evaluated by
an “image domain metric” quantified using the power spectrogram;
while the audio material resemblance is best measured by a “feature
domain metric” – both will be defined next.

Image domain metric. Given a reference sound s[n] and an es-
timated sound s̃[n], their power spectrograms are computed using
Eq. (9) and denoted as two 2D images: I = P[m, ω], Ĩ = P̃[m, ω].
An image domain metric can then be expressed as

�image(I, Ĩ). (15)

Our goal is to find an estimated image Ĩ that minimizes a given
image domain metric. This process is equivalent to image registra-
tion in computer vision and medical imaging.

Feature domain metric. A feature φi = (fi, di, ai) is essentially
a three-dimensional point. As established in Section 3, the set of
features of a sounding object is closely related to the material prop-
erties of that object. Therefore a metric defined in the feature space
is useful in measuring the audio material resemblance of two ob-
jects. In other words, a good estimate of material parameters should
map the eigenvalues of the virtual object to similar modes as that of
the real object. A feature domain metric can be written as

�feature(�, �̃) (16)

and the process of finding the minimum can be viewed as a point
set matching problem in computer vision.

Hybrid metric. Both the auditory perceptual similarity and audio
material resemblance would need to be considered for a generalized
framework, in order to extract and transfer material parameters
for modal sound synthesis using a recorded example to guide the
automatic selection of material parameters. Therefore, we propose
a novel “hybrid” metric that takes into account of both.

�hybrid(I,�, Ĩ, �̃) (17)

Next, we provide details on how we design and compute these
metrics.

5.2.1 Image Domain Metric. Given two power spectrogram
images I and Ĩ, a naive metric can be defined as their squared
difference: �image(I, Ĩ) = ∑

m,ω

(
P[m, ω] − P̃[m, ω]

)2
. There are,

however, several problems with this metric. The frequency resolu-
tion is uniform across the spectrum, and the intensity is uniformly
weighted. As humans, however, we distinguish lower frequencies
better than the higher frequencies, and mid-frequency signals ap-
pear louder than extremely low or high frequencies [Zwicker and
Fastl 1999]. Therefore, directly taking squared difference of power
spectrograms overemphasizes the frequency differences in the high-
frequency components and the intensity differences near both ends
of the audible frequency range. It is necessary to apply both fre-
quency and intensity transformations before computing the image
domain metric. We design these transformations based on psychoa-
coustic principles [Zwicker and Fastl 1999].

Frequency transformation. Studies in psychoacoustics suggested
that humans have a limited capacity to discriminate between nearby
frequencies, that is, a frequency f1 is not distinguishable from f2

if f2 is within f1 ± �f . The indistinguishable range �f is itself
a function of frequency, for example, the higher the frequency, the
larger the indistinguishable range. To factor out this variation in �f
a different frequency representation, called critical-band rate z, has
been introduced in psychoacoustics. The unit for z is Bark, and it
has the advantage that while �f is a function of f (measured in Hz),
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Fig. 4. Psychoacoustics-related values: (a) the relationship between
critical-band rate (in Bark) and frequency (in Hz); (b) the relationship be-
tween loudness level LN (in phon), loudness L (in sone), and sound pressure
level Lp (in dB). Each curve is an equal-loudness contour, where a constant
loudness is perceived for pure steady tones with various frequencies.

it is constant when measured in Barks. Therefore, by transforming
the frequency dimension of a power spectrogram from f to z, we
obtain an image that is weighted according to human’s perceptual
frequency differences. Figure 4(a) shows the relationship between
critical-band rate z and frequency f , z = Z(f ).

Intensity transformation. Sound can be described as the variation
of pressure, p(t), and human auditory system has a high dynamical
range, from 10−5 Pa (threshold of hearing) to 102 Pa (threshold of
pain). In order to cope with such a broad range, the sound pressure
level is normally used. For a sound with pressure p, its sound
pressure level Lp in decibel (abbreviated to dB-SPL) is defined as

Lp = 20 log(p/p0), (18)

where p0 is a standard reference pressure. While Lp is just a physical
value, loudness L is a perceptual value, which measures human
sensation of sound intensity. In between, loudness level LN relates
the physical value to human sensation. Loudness level of a sound is
defined as the sound pressure level of a 1-kHz tone that is perceived
as loud as the sound. Its unit is phon, and is calibrated such that a
sound with loudness level of 40 phon is as loud as a 1-kHz tone at
40 dB-SPL. Finally, loudness L is computed from loudness level.
Its unit is sone, and is defined such that a sound of 40 phon is 1
sone; a sound twice as loud is 2 sone, and so on.

Figure 4(b) shows the relationship between sound pressure level
Lp , loudness level LN , and loudness L according to the interna-
tional standard [ISO 2003]. The curves are equal-loudness con-
tours, which are defined such that for different frequency f and
sound pressure level Lp , the perceived loudness level LN and loud-
ness L is constant along each equal-loudness contour. Therefore the
loudness of a signal with a specific frequency f and sound pressure
level Lp can be calculated by finding the equal-loudness contour
passing (f, Lp).

There are other psychoacoustic factors that can affect the
human sensation of sound intensity. For example, van den Doel
et al. [van den Doel and Pai 2002; van den Doel et al. 2004]
considered the “masking” effect, which describes the change of
audible threshold in the presence of multiple stimuli, or modes
in this case. However, they did not handle the loudness transform
above the audible threshold, which is critical in our perceptual
metric. Similar to the work by van den Doel and Pai [1998], we
have ignored the masking effect.

Psychoacoustic metric. After transforming the frequency f (or
equivalently, ω) to the critical-band rate z and mapping the intensity
to loudness, we obtain a transformed image T(I) = T(I)[m, z].
Different representations of a sound signal are shown in Figure 5.
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Fig. 5. Different representation of a sound clip. Top: time domain signal
s[n]. Middle: original image, power spectrogram P [m,ω] with intensity
measured in dB. Bottom: image transformed based on psychoacoustic prin-
ciples. The frequency f is transformed to critical-band rate z, and the
intensity is transformed to loudness. Two pairs of corresponding modes are
marked as A and B. It can be seen that the frequency resolution decreases
toward the high frequencies, while the signal intensities in both the higher-
and lower-end of the spectrum are de-emphasized.

Then we can define a psychoacoustic image domain metric as

�psycho(I, Ĩ) =
∑
m,z

(
T(I)[m, z] − T(Ĩ)[m, z]

)2
. (19)

Similar transformations and distance measures have also been
used to estimate the perceived resemblance between music
pieces [Morchen et al. 2006; Pampalk et al. 2002].

5.2.2 Feature Domain Metric. As shown in Eq. (8), in the
(ω, d)-space, modes under the assumption of Rayleigh damping lie
on a circle determined by damping parameters α and β, while fea-
tures extracted from example recordings can be anywhere. There-
fore, it is challenging to find a good match between the reference
features � and estimated features �̃. Figure 6(a) shows a typical
matching in the (f, d)-space. Next we present a feature domain
metric that evaluates such a match.

In order to compute the feature domain metric, we first transform
the frequency and damping of feature points to another different
2D space. Namely, from (fi, di) to (xi, yi), where xi = X(fi) and
yi = Y(di) encode the frequency and damping information re-
spectively. With suitable transformations, the Euclidean distance
defined in the transformed space can be more useful and meaning-
ful for representing the perceptual difference. The distance between
two feature points is thus written as

D(φi, φ̃j ) ≡ ‖(X(fi), Y(di)) − (X(f̃j ), Y(d̃j ))‖. (20)

Frequency and damping are key factors in determining material
agreement, while amplitude indicates relative importance of modes.
That is why we measure the distance between two feature points in
the 2D (f, d)-space and use amplitude to weigh that distance.

For frequency, as described in Section 5.2.1 we know that the fre-
quency resolution of human is constant when expressed as critical-
band rate and measured in Barks: �f (f ) ∝ �z. Therefore it is a
suitable frequency transformation

X(f ) = czZ(f ), (21)

where cz is some constant coefficient.
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Fig. 6. Point set matching problem in the feature domain: (a) in the original
frequency and damping, (f, d)-space; (b) in the transformed, (x, y)-space,
where x = X(f ) and y = Y (d). The blue crosses and red circles are
the reference and estimated feature points respectively. The three features
having the largest energies are labeled 1, 2, and 3.

For damping, although human can roughly sense that one mode
damps faster than another, directly taking the difference in damping
value d is not feasible. This is due to the fact that humans cannot dis-
tinguish between extremely short bursts [Zwicker and Fastl 1999].
For a damped sinusoid, the inverse of the damping value, 1/di , is
proportional to its duration, and equals to how long before the signal
decays to e−1 of its initial amplitude. While distance measured in
damping values overemphasizes the difference between signals with
high d values (corresponding to short bursts), distance measured in
durations does not. Therefore

Y (d) = cd

1

d
(22)

(where cd is some constant coefficient) is a good choice of damping
transformation. The reference and estimated features of data in
Figure 6(a) are shown in the transformed space in Figure 6(b).

Having defined the transformed space, we then look for match-
ing the reference and estimated feature points in this space. Our
matching problem belongs to the category where there is no known
correspondence, that is, no prior knowledge about which point in
one set should be matched to which point in another. Furthermore,
because there may be several estimated feature points in the neigh-
borhood of a reference point or vice versa, the matching is not
necessarily a one-to-one relationship. There is also no guarantee
that an exact matching exists, because: (1) the recorded material
may not obey the Rayleigh damping model, (2) the discretization of
the virtual object and the assumed hit point may not give the exact
eigenvalues and excitation pattern of the real object. Therefore we
are merely looking for a partial, approximate matching.

The simplest point-based matching algorithm that solves prob-
lems in this category (i.e., partial, approximate matching without
known correspondence) is iterative closest points. It does not work
well, however, when there is a significant number of feature points
that cannot be matched [Besl and McKay 1992], which is possibly
the case in our problem. Therefore, we define a metric, match ratio
product, that meets our need and is discussed next.

For a reference feature point set �, we define a match ratio that
measures how well they are matched by an estimated feature point
set �̃. This set-to-set match ratio, defined as

R(�, �̃) =
∑

i wiR(φi, �̃)∑
i wi

, (23)

is a weighted average of the point-to-set match ratios, which are in
turn defined as

R(φi, �̃) =
∑

j ũij k(φi, φ̃j )∑
j ũij

, (24)

a weighted average of the point-to-point match scores k(φi, φ̃j ). The
point-to-point match score k(φi, φ̃j ), which is directly related to the
distance of feature points (Eq. (20)), should be designed to give
values in the continuous range [0, 1], with 1 meaning that the two
points coincide, and 0 meaning that they are too far apart. Similarly
R(φi, �̃) = 1 when φi coincides with an estimated feature point,
and R(�, �̃) = 1 when all reference feature points are perfectly
matched. The weight wi and ũij in Eqs. (23) and (24) are used to
adjust the influence of each mode. The match ratio for the estimated
feature points, R̃, is defined analogously.

R̃(�, �̃) =
∑

j w̃jR(φ̃j , �)∑
i w̃j

(25)

The match ratios for the reference and the estimated feature point
sets are then combined to form the Match Ratio Product (MRP),
which measures how well the reference and estimated feature point
sets match with each other,

�MRP(�, �̃) = −RR̃ (26)

The negative sign is to comply with the minimization framework.
Multiplying the two ratios penalizes the extreme case where either
one of them is close to zero (indicating poor matching).

The normalization processes in Eq. (23) and Eq. (25) are neces-
sary. Notice that the denominator in Eq. (25) is related to the number
of estimated feature points inside the audible range, Ñaudible (in fact∑

j w̃j = Ñaudible if all w̃j = 1). Depending on the set of parame-
ters, Ñaudible can vary from a few to thousands. Factoring out Ñaudible

prevents the optimizer from blindly introducing more modes into the
audible range, which may increase the absolute number of matched
feature points, but may not necessarily increase the match ratios.
Such averaging techniques have also been employed to improve the
robustness and discrimination power of point-based object matching
methods [Dubuisson and Jain 1994; Gope and Kehtarnavaz 2007].

In practice, the weights w’s and u’s, can be assigned accord-
ing to the relative energy or perceptual importance of the modes.
The point-to-point match score k(φi, φ̃j ), can also be tailored to
meet different needs. The constants and function forms used in this
section are listed in Appendix B.

5.2.3 Hybrid Metric. Finally, we combine the strengths from
both image and feature domain metrics by defining the following
hybrid metric.

�hybrid = �psycho

|�MRP| (27)

This metric essentially weights the perceptual similarity with how
well the features match, and by making the match ratio product as
the denominator, we ensure that a bad match (low MRP) will boost
the metric value and is therefore highly undesirable.

5.3 Optimizer

We use the Nelder-Mead method [Lagarias et al. 1999] to minimize
Eq. (14), which may converge into one of the many local minima.
We address this issue by starting the optimizer from many starting
points, generated based on the following observations.
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First, as elaborated by Eq. (8) in Section 3, the estimated modes
are constrained by a circle in the (ω, d)-space. Secondly, although
there are many reference modes, they are not evenly excited by a
given impact; we observe that usually the energy is mostly concen-
trated in a few dominant ones. Therefore, a good estimate of α and
β must define a circle that passes through the neighborhood of these
dominant reference feature points. We also observe that in order to
yield a low metric value, there must be at least one dominant esti-
mated mode at the frequency of the most dominant reference mode.

We thereby generate our starting points by first drawing two
dominant reference feature points from a total of Ndominant of them,
and find the circle passing through these two points. This circle is
potentially a “good” circle, from which we can deduce a starting
estimate of α and β using Eq. (8). We then collect a set of eigenvalues
and amplitudes (defined in Section 5.1) {(λ0

j , a
0
j )}, such that there

does not exist any (λ0
k, a

0
k ) that simultaneously satisfies λ0

k < λ0
j

and a0
k > a0

j . It can be verified that the estimated modes mapped
from this set always include the one with the highest energy, for any
mapping parameters {α, β, γ, σ } used in Eq. (12). Each (λ0

j , a
0
j ) in

this set is then mapped and aligned to the frequency of the most
dominant reference feature point, and its amplitude is adjusted to be
identical as the latter. This step gives a starting estimate of γ and σ .
Each set of {α, β, γ, σ } computed in this manner is a starting point,
and may lead to a different local minimum. We choose the set which
results in the lowest metric value to be our estimated parameters.
Although there is no guarantee that a global minimum will be met,
we find that the results produced with this strategy are satisfactory
in our experiments, as discussed in Section 7.

6. RESIDUAL COMPENSATION

With the optimization proposed in Section 5, a set of parameters that
describe the material of a given sounding object can be estimated,
and the produced sound bears a close resemblance to the material
used in the given example audio. However, linear modal synthesis
alone is not capable of synthesizing sounds that are as rich and real-
istic as many real-world recordings. Firstly, during the short period
of contact, not all energy is transformed into stable vibration that can
be represented with a small number of damped sinusoids, or modes.
The stochastic and transient nature of the nonmodal components
makes sounds in nature rich and varying. Secondly, as discussed in
Section 3, not all features can be captured due to the constraints for
modes in the synthesis model. In this section we present a method
to account for the residual, which approximates the difference be-
tween the real-world recordings and the modal synthesis sounds. In
addition, we propose a technique for transferring the residual with
geometry and interaction variation. With the residual computation
and transfer algorithms introduced shortly, more realistic sounds
that automatically vary with geometries and hitting points can be
generated with a small computation overhead.

6.1 Residual Computation

In this section we discuss how to compute the residual from the
recorded sound and the synthesized modal sound generated with
the estimated parameters.

Previous works have also looked into capturing the difference
between a source audio and its modal component [Serra and
Smith III 1990; Serra 1997; Lloyd et al. 2011]. In these works, the
modal part is directly tracked from the original audio, so the resid-
ual can be calculated by a straightforward subtraction of the power
spectrograms. The synthesized modal sound in our framework,
however, is generated solely from the estimated material param-

Fig. 7. Residual computation. From a recorded sound (a), the reference
features are extracted (b), with frequencies, dampings, and energies depicted
as the blue circles in (f). After parameter estimation, the synthesized sound
is generated (c), with the estimated features shown as the red crosses in (g),
which all lie on a curve in the (f, d)-plane. Each reference feature may be
approximated by one or more estimated features, and its match ratio number
is shown. The represented sound is the summation of the reference features
weighted by their match ratios, shown as the solid blue circles in (h). Finally,
the difference between the recorded sound’s power spectrogram (a) and the
represented sound’s (d) are computed to obtain the residual (e).

eters. Although it preserves the intrinsic quality of the recorded
material, in general the modes in our synthesized sounds are not
perfectly aligned with the recorded audio. An example is shown in
Figure 7(a) and Figure 7(c). It is due to the constraints in our sound
synthesis model and discrepancy between the discretized virtual
geometries and the real-world sounding objects. As a result, direct
subtraction does not work in this case to generate a reasonable
residual. Instead, we first compute an intermediate data, called the
represented sound. It corresponds to the part in the recorded sound
that is captured, or represented, by our synthesized sound. This
represented sound (Figure 7(d)) can be directly subtracted from the
recorded sound to compute the residual (Figure 7(e)).

The computation of the represented sound is based on the fol-
lowing observations. Consider a feature (described by φi) extracted
from the recorded audio. If it is perfectly captured by the estimated
modes, then it should not be included in the residual and should be
completely subtracted from the recorded sound. If it is not captured
at all, it should not be subtracted from the recorded sound, and
if it is approximated by an estimated mode, it should be partially
subtracted. Since features closely represent the original audio, they
can be directly subtracted from the recorded sound.

The point-to-set match ratio R(φi, �̃) proposed in Section 5.2
essentially measures how well a reference feature φi is represented
(matched) by all the estimated modes. This match ratio can be
conveniently used to determine how much of the corresponding
feature should be subtracted from the recording.

The represented sound is therefore obtained by adding up all the
reference features that are respectively weighted by the match ratio
of the estimated modes. And the power spectrogram of the residual
is obtained by subtracting the power spectrogram of the represented
sound from that of the recorded sound. Figure 7 illustrates the
residual computation process.

6.2 Residual Transfer

Residual of one particular instance (i.e., one geometry and one
hit point) can be obtained through the preceding described resid-
ual computation method. However, when synthesizing sounds for
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Fig. 8. Single mode residual transform: The power spectrogram of a source
mode (f1, d1, a1) (the blue wireframe) is transformed to a target mode
(f2, d2, a2) (the red wireframe), through frequency shifting, time stretching,
and height scaling. The residual power spectrogram (the blue surface at the
bottom) is transformed in the exact same way.

a different geometry undergoing different interaction with other
rigid bodies, the residual audio needs to vary accordingly. Lloyd
et al. [2011] proposed applying a random dip filter on the residual to
provide variation. While this offers an attractive solution for quickly
generating modified residual sound, it does not transfer accordingly
with the geometry change or the dynamics of the sounding object.

6.2.1 Algorithm. As discussed in previous sections, modes
transfer naturally with geometries in the modal analysis process,
and they respond to excitations at runtime in a physical manner. In
other words, the modal component of the synthesized sounds al-
ready provides transferability of sounds due to varying geometries
and dynamics. Hence, we compute the transferred residual under
the guidance of modes as follows.

Given a source geometry and impact point, we know how to
transform its modal sound to a target geometry and impact points.
Equivalently, we can describe such transformation as acting on the
power spectrograms, transforming the modal power spectrogram of
the source, Ps

modal, to that of the target, Pt
modal

Ps
modal

H−→ Pt
modal, (28)

where H is the transform function. We apply the same transform
function H to the residual power spectrograms

Ps
residual

H−→ Pt
residual, (29)

where the source residual power spectrogram is computed as de-
scribed in Section 6.1.

More specifically, H can be decomposed into per-mode trans-
form functions, Hi,j , which transforms the power spectrogram of a
source mode φs

i = (f s
i , ds

i , a
s
i ) to a target mode φt

j = (f t
j , d

t
j , a

t
j ).

Hi,j can further be described as a series of operations on the source
power spectrogram Ps

modal: (1) the center frequency is shifted from
f s

i to f t
j ; (2) the time dimension is stretched according to the ratio

between ds
i and dt

j ; (3) the height (intensity) is scaled pixel-by-pixel
to match Pt

modal. The per-mode transform is performed in the neigh-
borhood of f s

i , namely between 1
2 (f s

i−1 + f s
i ) and 1

2 (f s
i + f s

i+1), to
that of f t

j , namely between 1
2 (f t

j−1 + f t
j ) and 1

2 (f t
j + f t

j+1).
The per-mode transform is performed for all pairs of source

and target modes, and the local residual power spectrograms are
“stitched” together to form the complete Pt

residual. Finally, the time
domain signal of the residual is reconstructed from Pt

residual, using
an iterative inverse STFT algorithm by Griffin and Lim [2003].
Algorithm 1 shows the complete feature-guided residual transfer
algorithm. With this scheme, the transform of the residual power
spectrogram is completely guided by the appropriate transform of

ALGORITHM 1: Residual Transformation at Runtime
Input: source modes �s = {φs

i }, target modes �t = {φt
j }, and

source residual audio ss
residual[n]

Output: target residual audio st
residual[n]

� ← DetermineModePairs(�s , �t )
foreach mode pair (φs

k, φ
t
k) ∈ � do

Ps ′ ← ShiftSpectrogram( Ps , �frequency)
Ps ′′ ← StretchSpectrogram( Ps ′, damping ratio)
A ← FindPixelScale(Pt , Ps ′′)
Ps

residual
′ ← ShiftSpectrogram(Ps

residual, �frequency)
Ps

residual
′′ ← StretchSpectrogram(Ps

residual
′, damping ratio)

Pt
residual

′′ ← MultiplyPixelScale(Ps
residual

′′, A)
(ωstart, ωend) ← FindFrequencyRange(φt

k−1, φt
k)

Pt
residual [m, ωstart, . . . , ωend] ← Pt

residual
′′ [m, ωstart, . . . , ωend]

end
st

residual[n] ← IterativeInverseSTFT(Pt
residual)
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truth estimated relative
error

α 9.2003e+1 9.1995e+1 9.31e-5
β 1.8297e-7 1.8299e-7 9.30e-5
γ 3.6791e+0 3.6791e+0 3.91e-6
σ 2.1873e-3 2.1872e-3 5.61e-5

truth estimated relative
error

α 3.9074e+0 3.9069e+0 1.27e-4
β 3.3935e-8 3.3935e-8 1.62e-6
γ 3.4186e+0 3.4186e+0 1.17e-6
σ 9.0013e-6 9.0009e-6 4.67e-5

truth estimated relative
error

α 3.1425e+1 3.1428e+1 9.93e-5
β 7.0658e-7 7.0663e-7 7.61e-5
γ 7.3953e+0 7.3953e+0 3.00e-6
σ 3.5842e-9 3.5847e-9 1.46e-4

Fig. 9. Results of estimating material parameters using synthetic sound
clips. The intermediate results of the feature extraction step are visualized
in the plots. Each blue circle represents a synthesized feature, whose coor-
dinates (x, y, z) denote the frequency, damping, and energy of the mode.
The red crosses represent the extracted features. The tables show the truth
value, estimated value, and relative error for each of the parameters.

modes. The resulting residual changes consistently with the modal
sound. Since the modes transform with the geometry and dynamics
in a physical manner, the transferred residual also faithfully reflects
this variation.

Note that a “one-to-one mapping” between the source and target
modes is required. If the target geometry is a scaled version of the
source geometry, then there is a natural correspondence between
the modes. If the target geometry, however, is of different shape
from the source one, such natural correspondence does not exist. In
this case, we pick the top Ndominant modes with largest energies from
both sides, and pair them from low frequency to high frequency.

6.2.2 Implementation and Performance. The most computa-
tion costly part of residual transfer is the iterative inverse STFT
process. We are able to obtain acceptable time domain recon-
struction from the power spectrogram when we limit the itera-
tion of inverse STFT to 10. Hardware acceleration is used in our
implementation to ensure fast STFT computation. More specifi-
cally, CUFFT, a CUDA implementation of fast Fourier transform,
is adopted for parallelized inverse STFT operations. Also note that
residual transfer computation only happens when there is a contact
event, the obtained time domain residual signal can be used until the
next event. On an NVIDIA GTX 480 graphics card, if the contact
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Fig. 10. Parameter estimation for different materials. For each material, the material parameters are estimated using an example recorded audio (top row).
Applying the estimated parameters to a virtual object with the same geometry as the real object used in recording the audio will produce a similar sound
(bottom row).
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Fig. 11. Feature comparison of real and virtual objects. The blue circles represent the reference features extracted from the recordings of the real objects. The
red crosses are the features of the virtual objects using the estimated parameters. Because of the Rayleigh damping model, all the features of a virtual object
lie on the depicted red curve on the (f, d)-plane.

events arrive at intervals around 1/30s, the residual transfer in the
current implementation can be successfully evaluated in time.

7. RESULTS AND ANALYSIS

Parameter estimation. Before working on real-world recordings, we
design an experiment to evaluate the effectiveness of our parameter
estimation with synthetic sound clips. A virtual object with known
material parameters {α, β, γ, σ } and geometry is struck, and a sound
clip is synthesized by mixing the excited modes. The sound clip is
entered to the parameter estimation pipeline to test if the same
parameters are recovered. Three sets of parameters are tested and
the results are shown in Figure 9.

This experiment demonstrates that if the material follows the
Rayleigh damping model, the proposed framework is capable of
estimating the material parameters with high accuracy. Shortly we
will see that real materials do not follow the Rayleigh damping
model exactly, but the presented framework is still capable of finding
the closest Rayleigh damping material that approximates the given
material.

We estimate the material parameters from various real-world
audio recordings: a wood plate, a plastic plate, a metal plate, a
porcelain plate, and a glass bowl. For each recording, the parameters
are estimated using a virtual object that is of the same size and shape
as the one used to record the audio clips. When the virtual object

Table I. Estimated Parameters

Parameters

Material α β γ σ

Wood 2.1364e+0 3.0828e-6 6.6625e+5 3.3276e-6

Plastic 5.2627e+1 8.7753e-7 8.9008e+4 2.2050e-6

Metal 6.3035e+0 2.1160e-8 4.5935e+5 9.2624e-6

Glass 1.8301e+1 1.4342e-7 2.0282e+5 1.1336e-6

Porcelain 3.7388e-2 8.4142e-8 3.7068e+5 4.3800e-7
Refer to Section 3 and Section 5 for the definition and estimation of these parameters.

is hit at the same location as the real-world object, it produces a
sound similar to the recorded audio, as shown in Figure 10 and the
supplementary video.

Figure 11 compares the refenece features of the real-world objects
and the estimated features of the virtual objects as a result of the
parameter estimation. The parameter estimated for these materials
are shown in Table I.

Transfered parameters and residual. The parameters estimated
can be transfered to virtual objects with different sizes and shapes.
Using these material parameters, a different set of resonance modes
can be computed for each of these different objects. The sound syn-
thesized with these modes preserves the intrinsic material quality of
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Fig. 12. Transfered material parameters and residual: from a real-world recording (a), the material parameters are estimated and the residual computed (b).
The parameters and residual can then be applied to various objects made of the same material, including (c) a smaller object with similar shape; (d) an object
with different geometry. The transfered modes and residuals are combined to form the final results (bottom row).

Fig. 13. Comparison of transfered results with real-word recordings: from one recording (column (a), top), the optimal parameters and residual are estimated,
and a similar sound is reproduced (column (a), bottom). The parameters and residual can then be applied to different objects of the same material ((b), (c), (d),
bottom), and the results are comparable to the real-world recordings ((b), (c), (d), top).

the example recording, while naturally reflecting the variation in vir-
tual object’s size, shape, and interactions in the virtual environment.

Moreover, taking the difference between the recording of the ex-
ample real object and the synthesized sound from its virtual counter-
part, the residual is computed. This residual can also be transfered
to other virtual objects, using methods described in Section 6.

Figure 12 gives an example of this transferring process. From an
example recording of a porcelain plate (a), the parameters for the

porcelain material are estimated, and the residual computed (b). The
parameters and residual are then transfered to a smaller porcelain
plate (c) and a porcelain bunny (d).

Comparison with real recordings. Figure 13 shows a comparison
of the transferred results with the real recordings. From a recording
of glass bowl, the parameters for glass are estimated (column (a))
and transfered to other virtual glass bowls of different sizes. The
synthesized sounds ((b) (c) (d), bottom row) are compared with the
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Fig. 14. The estimated parameters are applied to virtual objects of various sizes and shapes, generating sounds corresponding to all kinds of interactions such
as colliding, rolling, and sliding.

Table II. Offline Computation for Material Parameter Estimation

Material #starting points average #iteration average time (s)

Wood 60 1011 46.5

Plastic 210 904 49.4

Metal 50 1679 393.5

Porcelain 80 1451 131.3

Glass 190 1156 68.9

real-world audio for these different-sized glass bowls ((b) (c) (d),
top row). It can be seen that although the transfered sounds are
not identical to the recorded ones, the overall trend in variation is
similar. Moreover, the perception of material is preserved, as can be
verified in the accompanying video. More examples of transferring
the material parameters as well as the residuals are demonstrated in
the accompanying video.

Example: a complicated scenario. We applied the estimated
parameters for various virtual objects in a scenario where
complex interactions take place, as shown in Figure 14 and the
accompanying video.

Performance. Table II shows the timing for our system running
on a single core of a 2.80 GHz Intel Xeon X5560 machine. It should
be noted that the parameter estimation is an offline process: it needs
to be run only once per material, and the result can be stored in a
database for future reuse.

For each material in column one, multiple starting points are
generated first as described in Section 5.3, and the numbers of
starting points are shown in column two. From each of these
starting points, the optimization process runs for an average number
of iterations (column three) until convergence. The average time
taken for the process to converge is shown in column four. The
convergence is defined as when both the step size and the difference
in metric value are lower than their respective tolerance values, �x

and �metric. The numbers reported in Table II are measured with
�x = 1e-4 and �metric = 1e-8.

8. PERCEPTUAL STUDY

To assess the effectiveness of our parameter estimation algorithm,
we designed an experiment to evaluate the auditory perception of
the synthesized sounds of five different materials. Each subject is
presented with a series of 24 audio clips with no visual image or
graphical animation. Among them, 8 are audio recordings of sound

Table III. Material Recognition Rate Matrix: Recorded
Sounds
Recognized Material

Recorded Wood Plastic Metal Porcelain Glass

Material (%) (%) (%) (%) (%)

Wood 50.7 47.9 0.0 0.0 1.4

Plastic 37.5 37.5 6.3 0.0 18.8

Metal 0.0 0.0 66.1 9.7 24.2

Porcelain 0.0 0.0 1.2 15.1 83.7

Glass 1.7 1.7 1.7 21.6 73.3

generated from hitting a real-world object, and 16 are synthesized
using the techniques described in this article. For each audio clip,
the subject is asked to identify among a set of 5 choices (wood,
plastic, metal, porcelain, and glass) from which the sound came.
A total of 53 subjects (35 women and 18 men), from age of 22
to 71, participated in this study. The 8 real objects are: a wood
plate, a plastic plate, a metal plate, a porcelain plate, and four
glass bowls with different sizes. The 16 virtual objects are: three
different shapes (a plate, a stick, and a bunny) for each of these
four materials: wood, plastic, metal, and porcelain, plus four glass
bowls with different sizes.

We show the cumulative recognition rates of the sounding materi-
als in two separate matrices: Table III presents the recognition rates
of sounds from real-world materials, and Table IV reflects the recog-
nition rates of sounds from synthesized virtual materials. The num-
bers are normalized with the number of subjects answering the ques-
tions. For example, row 3 of Table III means that for a given real-
world sound recorded from hitting a metal object, none of the sub-
jects thought it came from wood or plastic, 66.1% of them thought it
came from metal, 9.7% of them thought it came from porcelain, and
24.2% of them thought it came from glass. Correspondingly, row 3
of Table IV shows that for a sound synthesized with our estimated
parameters for metal, the percentage, of subjects thinking that it
came from wood, plastic, metal, porcelain, or glass respectively.

We found that the successful recognition rate of virtual materials
using our synthesized sounds compares favorably to the recognition
rate of real materials using recorded sounds. The difference of
the recognition rates (recorded minus synthesized) is close to zero
for most of the materials, with 95% confidence intervals shown
in Table V. A confidence interval covering zero means that the
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Table IV. Material Recognition Rate Matrix: Synthesized
Sounds Using Our Method

Recognized Material

Synthesized Wood Plastic Metal Porcelain Glass

Material (%) (%) (%) (%) (%)

Wood 52.8 43.5 0.0 0.0 3.7

Plastic 43.0 52.7 0.0 2.2 2.2

Metal 1.8 1.8 69.6 15.2 11.7

Porcelain 0.0 1.1 7.4 29.8 61.7

Glass 3.3 3.3 3.8 40.4 49.2

Table V. 95% Confidence Interval of Difference in Recognition
Rates

Wood(%) Plastic(%) Metal(%) Porcelain(%) Glass (%)

(−17.1; 12.9) (−44.7; 14.3) (−18.2; 11.3) (−27.7; −1.6) (12.6; 35.6)

difference in recognition rate is not statistically significant. If both
endpoints of a confidence interval are positive, the recognition rate
of the real material is significantly higher than that of the virtual
material; if both endpoints are negative, the recognition rate of the
real material is significantly lower.

In general, for both recorded and synthesized sounds, several
subjects have reported difficulty in reliably differentiating between
wooden and dull plastic materials and between glass and porce-
lain. On the other hand, some of the subjects suggested that we
remove redundant audio clips, which are in fact distinct sound clips
of recordings generated from hitting real materials and their syn-
thesized counterparts.

9. CONCLUSION AND FUTURE WORK

We have presented a novel data-driven, physically based sound
synthesis algorithm using an example audio clip from real-world
recordings. By exploiting psychoacoustic principles and feature
identification using linear modal analysis, we are able to estimate
the appropriate material parameters that capture the intrinsic
audio properties of the original materials and transfer them to
virtual objects of different sizes, shape, geometry, and pair-wise
interaction. We also propose an effective residual computation
technique to compensate for linear approximation of modal
synthesis.

Although our experiments show successful results in estimating
the material parameters and computing the residuals, it has some
limitations. Our model assumes linear deformation and Rayleigh
damping. While offering computational efficiency, these models
cannot always capture all sound phenomena that real-world materi-
als demonstrate. Therefore, it is practically impossible for the modal
synthesis sounds generated with our estimated material parameters
to sound exactly the same as the real-world recording. Our feature
extraction and parameter estimation depend on the assumption that
the modes do not couple with one another. Although it holds for the
objects in our experiments, it may fail when recording from objects
of other shapes, for example, thin shells where nonliear models
would be more appropriate [Chadwick et al. 2009].

We also assume that the recorded material is homogeneous and
isotropic. For example, wood is highly anisotropic when measured
along or across the direction of growth. The anisotropy greatly
affects the sound quality and is an important factor in making high-
precision musical instruments.

Because the sound of an object depends both on its geometry
and material parameters, the geometry of the virtual object must be
as close to the real-world object as possible to reduce the error in
parameter estimation. Moreover, the mesh discretization must also
be adequately fine. For example, although a cube can be represented
by as few as eight vertices, a discretization so coarse not only clips
the number of vibration modes but also makes the virtual object
artificially stiffer than its real-world counterpart. The estimated γ ,
which encodes the stiffness, is thus unreliable. These requirements
regarding the geometry of the virtual object may affect the accuracy
of the results using this method.

Although our system is able to work with an inexpensive and sim-
ple setup, care must be taken in the recording condition to reduce
error. For example, the damping behavior of a real-world object is
influenced by the way it is supported during recording, as energy
can be transmitted to the supporting device. In practice, one can
try to minimize the effect of contacts and approximate the system
as free vibration, or one can rigidly fix some points of the object
to a relatively immobile structure and model the fixed points as
part of the boundary conditions in the modal analysis process. It is
also important to consider the effect of room acoustics. For exam-
ple, a strong reverberation will alter the observed amplitude-time
relationship of a signal and interfere with the damping estimation.

Despite these limitations, our proposed framework is general,
allowing future research to further improve and use different indi-
vidual components. For example, the difference metric now con-
siders the psychoacoustic factors and material resemblance through
power spectrogram comparison and feature matching. It is possible
that more factors can be taken into account, or a more suitable rep-
resentation, as well as a different similarity measurement of sounds
can be found.

The optimization process approximates the global optimum
by searching through all “good” starting points. With a deeper
investigation of the parameter space and more experiments, the
performance may be possibly improved by designing a more effi-
cient scheme to navigate the parameter space, such as starting-point
clustering, early pruning, or a different optimization procedure can
be adopted.

Our residual computation compensates the difference between
the real recording and the synthesized sound, and we proposed a
method to transfer it to different objects. However, it is not the only
way, much due to the fact that the origin and nature of residual is
unknown. Meanwhile, it still remains a challenge to acquire record-
ings of only the stuck object and completely remove input from the
striker. Our computed residual is inevitably polluted by the striker
to some extent. Therefore, future solutions for separating sounds
from the two interacting objects should facilitate a more accurate
computation for residuals from the struck object.

When transferring residual computed from impacts to continu-
ous contacts (e.g., sliding and rolling), there are certain issues to
be considered. Several previous work have approximated continu-
ous contacts with a series of impacts and have generated plausible
modal sounds. Under this approximation, our proposed feature-
guided residual transfer technique can be readily adopted. However,
the effectiveness of this direct mapping needs further evaluation.
Moreover, future study on continuous contact sound may lead to an
improved modal synthesis model different than the impact-based
approximation, under which our residual transfer may not be appli-
cable. It is then also necessary to reconsider how to compensate the
difference between a real continuous contact sound and the modal
synthesis sound.

In this article, we focus on designing a system that can quickly
estimate the optimal material parameters and compute the residual
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merely based on a single recording. However, when a small number
of recordings of the same material are given as input, machine
learning techniques can be used to determine the set of parameters
with maximum likelihood, and it could be an area worth exploring.
Finally, we would like to extend this framework to other nonrigid
objects and fluids, and possibly nonlinear modal synthesis models
as well.

In summary, data-driven approaches have proven useful in ar-
eas in computer graphics, including rendering, lighting, character
animation, and dynamics simulation. With promising results that
are transferable to virtual objects of different geometry, sizes, and
interactions (e.g., Ren et al. [2012, 2013]), this work is the first
rigorous treatment of the problem on automatically determining the
material parameters for physically based sound synthesis using a
single sound recording, and it offers a new direction for combining
example-guided and modal-based approaches.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM
Digital Library.
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VÄLIMÄKI, V., HUOPANIEMI, J., KARJALAINEN, M., AND JÁNOSY, Z. 1996.
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